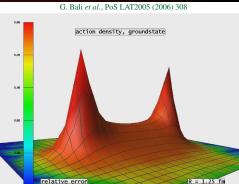
Continuum-based theory for QCD

Ian Cloët
Argonne National Laboratory

Joint Town Meetings on QCD Temple University September 13-15, 2014

Roads to Discovery: 2014-2023

- Meson and baryon spectroscopy
 - the discovery of exotic or hybrid hadrons would force a dramatic reassessment of the distinction between the notions of matter fields and force fields
- Exploit opportunities provided by new data on nucleon elastic and transition form factors
 - chart infrared evolution of QCD's coupling and dressed-masses
 - reveal correlations that are key to nucleon structure
 - expose the facts or fallacies in modern descriptions of nucleon structure
- Precision experimental study of valence region, together with theoretical computation of distribution functions and distribution amplitudes
 - computation is critical without computation no amount of data can reveal anything about the theory underlying strong interaction physics


Discover the meaning of confinement and its relation to dynamical chiral symmetry breaking

origin of visible mass –

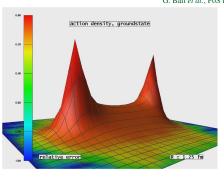
A Perspective on Confinement

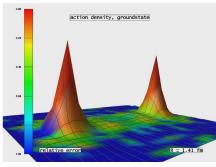
Folklore: "The color field lines between a quark and an anti-quark form flux tubes. A unit area placed midway between the quarks and perpendicular to the line connecting them intercepts a constant number of field lines, independent of the distance between the quarks.

This leads to a constant force between the quarks – and a large force at that, equal to about 16 metric tons."

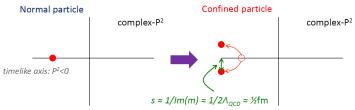
Hall-D CDR(5)

• Problem: in QCD 16 tonnes of force produces a lot of pions!





A Perspective on Confinement

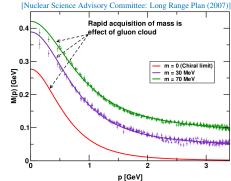


- In the presence of *light quarks* the breaking of the string appears to be an instantaneous de-localized process
- No flux tube in a theory with light quarks!
- Paradigm for confinement in hadron physics must be different from the flux tube picture

Confinement in QCD with light-quarks

- Confinement is expressed through a dramatic change in the analytic structure of propagators for coloured states
- In the study of hadrons attention should turn from potential models toward the continuum bound-state problem in quantum field theory
- Such approaches offer the possibility of posing simultaneously the questions
 - What is confinement?
 - What is dynamical chiral symmetry breaking?
 - How are they related?
- Is it plausible that these two phenomena so important in the Standard Model can have different origins and fates?

Dynamical Chiral Symmetry Breaking



- DCSB is the most important mass generating mechanism for visible matter in the Universe
 - responsible for approximately 98% of the proton's mass
 - Higgs mechanism is (almost) irrelevant for light quarks
- QCD's quark propagator ⇔ QCD's gap equation

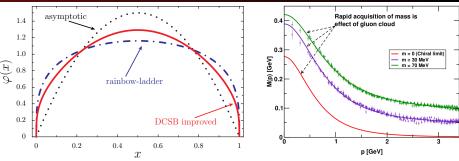
$$S(p) = \frac{Z(p^2)}{i \not p + M(p^2)}$$

Continuum- and Lattice-QCD are in agreement: the vast bulk of the light-quark mass comes from a cloud of gluons, dragged along by the quark as it propagates

The Pion

The Pion in QCD

 The pion has a dichotomous nature it is both a bound state of a dressed-quark and a dressed-antiquark in QFT and the Goldstone mode associated with DCSB in QCD

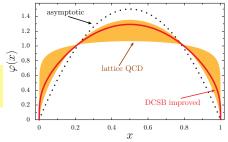


- In QFT the pion's wave function is given by the Bethe-Salpeter Equation
- A related quantity is the pion's parton distribution amplitude
 - $\varphi_{\pi}(x,\xi)$: is a light-front probability amplitude that describes the momentum distribution of a quark and antiquark in the bound-state's valence Fock state
- The pion PDA is an essentially nonperturbative quantity whose asymptotic form is known: $\varphi_{\pi}(x, \xi = \infty) = 6 x (1 x)$
 - such PDAs are crucial because their form sets the normalization of elastic and transition form factors in hard exclusive processes; e.g., pion form factor

$$Q^2 F_{\pi}(Q^2) \stackrel{Q^2 \to \infty}{\longrightarrow} 16 \pi f_{\pi}^2 \alpha_s(Q^2) \qquad \Longleftrightarrow \qquad \varphi_{\pi}^{\text{asy}}(x) = 6 x (1 - x)$$

Pion PDA from the Continuum-QCD

- The pion PDA exhibits a pronounced broadening compared with the asymptotic pion PDA – at any energy scale accessible to modern experiment
 - broading of the pion's PDA is directly linked to DCSB
- Evidence pointing in this direction has been accumulating for some time:
 - Sum Rules: S. V. Mikhailov and A. V. Radyushkin, JETP Lett. 43, 712 (1986)
 - V. Y. Petrov, et al., Phys. Rev. D 59, 114018 (1999) Instantons:
 - LCSR + lattice: V. M. Braun, M. Gockeler, et al., Phys. Rev. D 74, 074501 (2006)

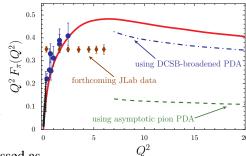

Pion PDA: Continuum and Lattice QCD

 Contemporary lattice-QCD simulations can only access one nontrivial moment

$$\int_0^1 dx \, (2x - 1)^2 \varphi_\pi(x) = 0.27 \pm 0.04$$

[V. Braun et al., Phys. Rev. D 74, 074501 (2006)]

• Continuum QCD and Bayesian analysis demonstrate that maximum information can be obtained from the lattice moment by using a *generalized* expansion ($\alpha \neq 3/2$)


$$\varphi_{\pi}(x,Q^2) = N_{\alpha} x^{\alpha - 1/2} (1 - x)^{\alpha - 1/2} \left[1 + \sum_{n=2,4,\dots} a_n^{\alpha}(Q^2) C_n^{\alpha}(2x - 1) \right]$$

- This approach reveals complete consistency between continuum- and lattice-QCD computations
 - at real-world energy scales, ground-state PDAs are broad and concave

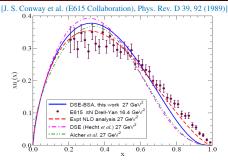
Pion Elastic Form Factor

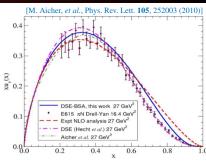
- Direct, symmetry-preserving computation of pion form factor predicts maximum in $Q^2 F_{\pi}(Q^2)$ at $Q^2 \approx 6 \, \text{GeV}^2$
 - magnitude of this product is determined by strength of DCSB at all accessible scales

The QCD prediction can be expressed as

$$Q^{2}F_{\pi}(Q^{2}) \overset{Q^{2} \gg \Lambda_{\text{QCD}}^{2}}{\sim} 16 \pi f_{\pi}^{2} \alpha_{s}(Q^{2}) \, \boldsymbol{w}_{\pi}^{2}; \qquad \boldsymbol{w}_{\pi} = \frac{1}{3} \int_{0}^{1} dx \, \frac{1}{x} \, \varphi_{\pi}(x)$$

- Continuum-QCD methods have provided a new picture of the pion form factor; with excellent agreement between direct calculation and the hard scattering formula – when all elements are computed self-consistently
- Continuum-QCD predicts that QCD power law behaviour with QCD's scaling law violations sets in at $Q^2 \sim 8 \text{ GeV}^2$


Measuring onset of Perturbative scaling



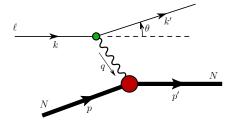
- 0.5 To observe onset of perturbative power law 0.4 $Q^{2} H_{\pi}^{(Q^{2})}$ behaviour – to differentiate differentiate from monopole from a monopole – forthcoming JLab data optimistically need data at 8 GeV² but likely also at 0.1 10 GeV² · · Amendolia fit [see talk by Tanja Horn] 15
- Scaling predictions are valid for both spacelike and timelike momenta, and timelike data show promise as the means of verifying modern predictions
- By using DCSB-broadened PDAs for pion and kaon, existing data for $F_K(q^2)/F_\pi(q^2)$ at timelike $q^2 \approx 17 \, \text{GeV}^2$ begin to appear understandable [K. K. Seth, S. Dobbs, *et al.*, Phys. Lett. B 730 (2014) 332–335] [Chao Shi, Lei Chang, *et al.*, Phys. Lett. B (2014)]
 - however, questions remain about the separate normalization of F_{π} and F_{K}

Pion PDF

- Need for QCD-based calculation is emphasized by story of pion's valence quark distribution function:
 - 1989: $u_v^{\pi} \stackrel{x \to 1}{\sim} (1-x)^1$ inferred from LO-Drell-Yan & disagrees with QCD
 - 2001: Dyson-Schwinger Equations (DSEs) predicts $u_v^{\pi} \stackrel{x \to 1}{\sim} (1-x)^2$ argues that distribution inferred from data can't be correct
 - 2010: new NLO reanalysis including soft-gluon resummation inferred distribution agrees with DSE-QCD
- Potentially important ramifications for nucleon PDF studies!

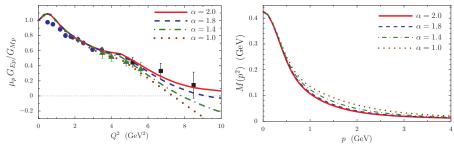
Some Key References

- A. V. Radyushkin, "Shape of Pion Distribution Amplitude," Phys. Rev. D 80, 094009 (2009);
- S. J. Brodsky, F. G. Cao and G. F. de Teramond,
 "Evolved QCD predictions for the meson-photon transition form factors,"
 Phys. Rev. D 84, 033001 (2011);
- L. Chang, I. C. Cloët, J. J. Cobos-Martinez, C. D. Roberts, et al., "Imaging dynamical chiral symmetry breaking: pion wave function on the . . .," Phys. Rev. Lett. 110, no. 13, 132001 (2013);
- I. C. Cloët, L. Chang, C. D. Roberts, S. M. Schmidt and P. C. Tandy, "Pion distribution amplitude from lattice-QCD,"
 Phys. Rev. Lett. 111, 092001 (2013);
- L. Chang, I. C. Cloët, C. D. Roberts, S. M. Schmidt and P. C. Tandy, "Pion electromagnetic form factor at spacelike momenta," Phys. Rev. Lett. 111, no. 14, 141802 (2013);
- S. J. Brodsky, G. F. de Teramond, H. G. Dosch and J. Erlich, "Light-Front Holographic QCD and Emerging Confinement," arXiv:1407.8131 [hep-ph].



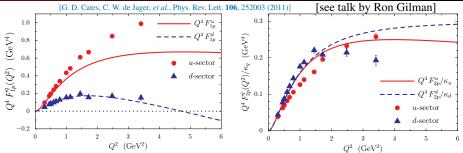
Baryons

Nucleon Elastic Form Factors


- Provide vital information about the structure and composition of the most basic elements of nuclear physics
 - elastic scattering therefore probes confinement at all energy scales

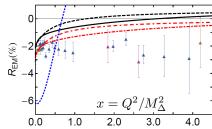
- Today accurate form factor measurements are creating a paradigm shift in our understanding of nucleon structure:
 - proton radius puzzle
 - ullet $\mu_p\,G_{Ep}/G_{Mp}$ ratio and a possible zero in G_{Ep}
 - flavour decomposition and evidence for diquark correlations
 - meson-cloud effects
 - seeking verification of perturbative QCD scaling predictions and scaling violations in elastic form factors
 - etc

Proton G_E/G_M and **DCSB**



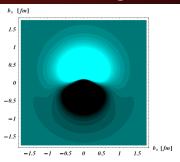
- Polarization transfer measurements of proton G_E/G_M from Jefferson Lab have drawn an enormous amount of attention
 - dispelled decades of perceived wisdom that distributions of charge and magnetization are the same
- Find that slight changes in M(p) on the domain $1 \lesssim p \lesssim 3 \, \text{GeV}$ have a striking effect on the G_E/G_M proton form factor ratio
- Strong indication that position of a zero is very sensitive to underlying dynamics and the nature of the transition from nonperturbative to perturbative QCD

Flavour separated proton form factors

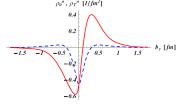


- Prima facie, these experimental results are remarkable
- ullet u and d quark sector form factors have very different scaling behaviour
- In the context of diquark correlations data straightforward to understand
 - ullet e.g. in the proton the d quark is much more likely to be in a scalar diquark than the doubly-represented u quark; diquark $\Longrightarrow 1/Q^2$ suppression
 - ICC, Eichmann, el al., Few Body Syst. 46, 1 (2009);
 ICC and G. A. Miller, Phys. Rev. C 86, 015208 (2012);
 J. O. Gonzalez-Hernandez, S. Liuti, et al., Phys. Rev. C 88, 065206 (2013)
- Future experiments will test for predicted zero in d-quark Dirac form factor

Nucleon to Resonance Transitions



- Given the challenges posed by non-perturbative QCD it is insufficient to study hadron ground-states alone [see talks by Gothe, Mokeev]
- Nucleon to resonance transition form factors provide a critical extension to elastic form factors – providing many more windows and different perspectives on quark-gluon dynamics
 - nucleon resonances are more sensitive to long-range effects in QCD than the properties of ground states . . . analogous to exotic and hybrid mesons
 - e.g. for $N \to \Delta$ it is found that $R_{EM} = -\frac{G_E^*}{G_M^*}$ is a particularly sensitive measure of *quark orbital angular momentum correlations* in the nucleon and Δ
 - Internally consistent continuum-QCD studies all predict a zero in R_{EM} ; an essential precursor to discovering pQCD $[R_{EM} \rightarrow 1]$; it *must* be found in experiment

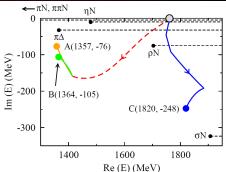

Transverse Charge Densities

Quark transverse charge density for a neutron polarized along the x-axis

[Carlson and Vanderhaeghen, Phys. Rev. Lett. **100**, 032004 (2008)] [Miller, Ann. Rev. Nucl. Part. Sci. **60**, 1 (2010)]

- It is now recognized that care must be taken when interpreting a 3-D Fourier transform of a form factor as a charge or magnetization density
- A rigorous density can be defined via a 2-D Fourier transform
 - these hadronic transverse charge densities are quantities as seen in a reference frame moving with infinite momentum
- Numerous new physical insights for elastic and transition form factors
 - e.g. the negative central neutron charge density, caused by the dominance of d quarks at the center

Baryon Spectroscopy



[see talk by Michael Doering]

Three poles, each seeded by a single dressed quark core:

Two poles associated with Roper resonance and the third with the next higher P_{11} resonance

 $[H.\ Kamano, {\it et\ al.}, Phys.\ Rev.\ C\ {\bf 88}, no.\ 3,035209\ (2013)]$

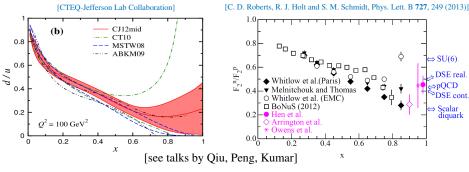
- The Excited Baryon Analysis Center (EBAC), resolved a fifty-year puzzle by demonstrating that the Roper resonance is the proton's first radial excitation
 - its lower-than-expected mass owes to a dressed-quark core shielded by a dense cloud of pions and other mesons
 [Decadal Report on Nuclear Physics: Exploring the Heart of Matter]
- This Experiment/Theory collaborative effort has now evolved into *JLab Physics Analysis Center* (JPAC) [see Michael Pennington's talk]

Some Key References

- I. C. Cloët, G. Eichmann, B. El-Bennich, T. Klahn and C. D. Roberts, "Survey of nucleon electromagnetic form factors," Few Body Syst. 46, 1 (2009);
- G. A. Miller, "*Transverse Charge Densities*," Ann. Rev. Nucl. Part. Sci. **60**, 1 (2010);
- F. Gross, G. Ramalho and M. T. Pena, "Covariant nucleon wave function with S, D, and P-state components," Phys. Rev. D 85, 093005 (2012)
- H. Kamano, S. X. Nakamura, T.-S. H. Lee and T. Sato, "Nucleon resonances within a dynamical coupled-channels model of πN and γN reactions," Phys. Rev. C **88**, no. 3, 035209 (2013);
- I. C. Cloët and G. A. Miller, "Nucleon form factors and spin content in a quark-diquark model with a pion cloud," Phys. Rev. C 86, 015208 (2012);
- I. C. Cloët, C. D. Roberts and A. W. Thomas, "Revealing dressed-quarks via the proton's charge distribution," Phys. Rev. Lett. 111, 101803 (2013);
- J. O. Gonzalez-Hernandez, S. Liuti, G. R. Goldstein and K. Kathuria, "Interpretation of the Flavor Dependence of Nucleon Form Factors in a GPD Model," Phys. Rev. C 88, 065206 (2013).

Parton Structure

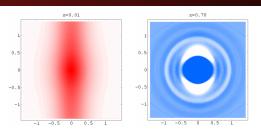
Parton Structure


 Understanding hadron structure means charting and computing the distribution of this matter and energy within the hadron

 mapping correlations and exposing their influence are the hallmark of nuclear physics

- Valence-quark structure of hadrons
 - definitive of a hadron it's how one tells a proton from a neutron
 - expresses charge; flavour; baryon number; and other Poincaré-invariant macroscopic quantum numbers
- Flavour content and asymmetry of sea-quark distributions
- The former and any non-trivial structure in the latter, are both essentially nonperturbative features of QCD
- Light front provides a link with quantum mechanics
 - if a probability interpretation is ever valid, it's on the light front

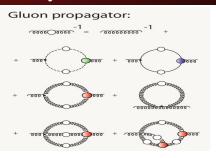
PDFs at $x \rightarrow 1$

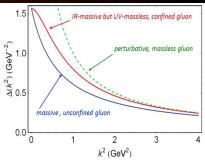


- Value of PDF ratios at x = 1 are fixed points of the evolution equations
 - hence they are very strong tests of nonperturbative dynamics
- lacktriangledown For nucleon x o 1 limit provides information on admixture of quark-quark correlations in nucleon wave function
- Existing data cannot discriminate between various scenarios, however a combination of polarized and unpolarized data on $x \gtrsim 0.8$ can

TMDs and GPDs

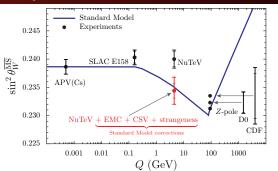
A model parametrization of the *u*-quark phase space charge distribution inside the nucleon


 $[A.\ V.\ Belitsky,\ X.\ -d.\ Ji\ \&\ F.\ Yuan,\ PRD\ 69,\ 074014\ (2004)]$


[see talks by Qiu, Metz & Liuti]

- GPDs and TMDs encode an enormous amount of information about hadrons & certain hard processes
 - understanding these distributions is at forefront of hadron theory
- Information will be revealed by a very close collaboration between experiment and theory
 - these functions must be calculated in framework with well-defined connection to QCD
- This is a critical near-term goal for hadron theory a closer connection with QCD is required and a greater US effort is needed

An Eye Toward an EIC



- Gluon satisfies its own gap equation & possesses a dynamically generated mass – which provides an infrared cutoff
 - ullet role of gluons with wavelength larger than 1/m(0) is greatly suppressed
- Hadron structure at low Bjorken-*x* is dominated by gluons
 - features in this regime must reflect infra-red properties of gluon dressing function
 - QCD-connected computations certainly will
- For example, gluon saturation, if observed must be reflected in infra-red properties of QCD's gluon propagator

Beyond Standard Model

Fermilab press conference

"The predicted value was 0.2227. The value we found was 0.2277, a difference of 0.0050. It might not sound like much, but the room full of physicists fell silent when we first revealed the result"

"99.75% probability that the neutrinos are not behaving like other particles . . . only 1 in 400 chance that our measurement is consistent with prediction"

- NuTeV: $\sin^2 \theta_W = 0.2277 \pm 0.0013 (\text{stat}) \pm 0.0009 (\text{syst})$ [Zeller et al. PRL. 88, 091802 (2002)]
- Standard Model: $\sin^2 \theta_W = 0.2227 \pm 0.0004 \Leftrightarrow 3\sigma \Longrightarrow$ "NuTeV anomaly"
- At the time widely thought as evidence for physics beyond Stardard Model
- However a decade of effort in hadron theory has likely provided a Standard Model explanation [see talk by Wally Melnitchouk]
 - explained by nuclear effects + charge symmetry violation + strangeness

Some Key References

- S. J. Brodsky, D. S. Hwang and I. Schmidt, "Initial state interactions and single spin asymmetries in Drell-Yan processes," Nucl. Phys. B **642**, 344 (2002);
- L. P. Gamberg, G. R. Goldstein and M. Schlegel, "Transverse Quark Spin Effects and the Flavor Dependence of the Boer-Mulders Function," Phys. Rev. D 77, 094016 (2008);
- F. Myhrer and A. W. Thomas, "A possible resolution of the proton spin problem," Phys. Lett. B **663**, 302 (2008);
- H. Avakian, A. V. Efremov, P. Schweitzer and F. Yuan, "The transverse momentum dependent distribution functions in the bag model," Phys. Rev. D 81, 074035 (2010);
- **1** L. Gamberg and Z. B. Kang, "Single transverse spin asymmetry of prompt photon *production*," Phys. Lett. B **718**, 181 (2012);
- H. H. Matevosyan, W. Bentz, I. C. Cloet and A. W. Thomas, "Transverse Momentum Dependent Fragmentation and Quark Distribution Functions," Phys. Rev. D 85, 014021 (2012);
- L. Gamberg, Z. B. Kang and A. Prokudin, "Indication on the process-dependence of the Sivers effect," Phys. Rev. Lett. 110, no. 23, 232301 (2013).

The Future

- QCD and Hadron Physics are unique:
 - must confront a fundamental theory in which the elementary degrees-of-freedom are confined and only hadrons reach detectors
- Continuum-QCD approaches are essential; they are at the forefront of guiding experiment and provide rapid feedback; thereby building intuition & understanding

- Hadron theory will guide and stimulate new endeavors aimed at exposing the content of the Standard Model and to help discover what lies beyond
- A vibrant and balanced hadron theory program interacting effectively with experiment – is crucial if the full potential of the nation's investment in hadron physics is to be realized
- This will ensure future investments have maximum discovery potential!